Dieses Blog durchsuchen

Die Osziröhre

Zu Anfang meines Blogs erzählte ich über ein kleines Projekt mit einer Oszilloskopröhre. Da auch hiervon noch Bilder im Archiv existieren, will ich es im Blog hier nicht vorenthalten:

Kathodenstrahlröhe mit Hochspannungserzeugung


Eine Kathodenstrahröhre (Braun'sche Röhre) besteht aus einem evakuierten Glaskolben, in dem sich eine Glühkathode aus Wolframdraht befindet, die durch einen elektrischen Heizdraht erhitzt wird. Dabei treten die Elektronen als Ladungswolke aus der Oberfläche aus (Glühemission). Zwischen der positiv geladenen Anode und der Glühkathode herrscht ein elektrisches Feld, in dem die Elektronen beschleunigt werden. Eine Lochblende lässt von den anfliegenden Elektronen nur ein Bündel mit bestimmbarem Durchmesser passieren, den eigentlichen Elektronenstrahl. Der Elektronenstrahl kann anschließend weiterbeschleunigt werden.
Die Braun'sche Röhre - wie sie z.B. in einem Kathodenstrahloszilloskop vorhanden ist – besitzt je zwei Kondensatorplatten, um den Elektronenstrahl abzulenken. (X und Y Ablenkplatten). Bei der Röhre handelt es sich hier um eine Philips B7S 401 Oszillografenröhre. Der Vollständigkeit halber liste ich hier ein paar technische Daten auf:

  •  Indirekt geheizte Kathode, Heizspannung Uf = 6,3V
  •   Heizstrom If = 90mA 
  •    Kathodenheizdauer tK =1min 
  •   Gesamtbeschleuningungsspannung Ua = 1,2kV 
  •   Fusspunktspannung des Nachbeschleunigungswiderstandes Ug5 = 300V 
  •     Beschleunigungsspannung Ug4 = 300 
  •   Fokussierspannung deltaUg3 = 20V … 50V 
  •   Vorbeschleunigungsspannung Ug2 = 1,2kV 
  •   Sperrspannung Ug1 = -30V … -80V
Anschlüsse am Röhrensockel
Ziel des Projektes war es also, die kleine Röhre wieder in Betrieb zu nehmen und ihr ein paar Bildchen zu entlocken. Also musste eine Ansteuerung gebaut werden. Da die Versorgungsspannungen recht vielfältig sind (6,3V bis 1200V), musste also zuerst dieses Problem gelöst werden. Mit einem NE555, ein paar Bauteilen und einem alten Transformator (240/12V) wurde ein Hochspannungsnetzteil gebastelt.
Das Prinzip ist einfach: Eine Gleichspannung wird mit einer kleinen Schaltung einfach sehr schnell abwechselnd ein- und wieder ausgeschaltet. Diese geschaltete Gleichspannung wiederum schaltet mit einem Leistungstransistor die Ausgangsseite des Transformators. (also da wo normalerweise die 12V anliegen wird jetzt eingespeist) Das Übersetzungverhältnis des Trafos funktioniert auch in die andere Richtung :). So enstehen am Ausgang schon einmal einige hundert Volt. (abhängig von der Schaltfrequenz). Um daraus nun über 1200V zu erzeugen, habe ich eine Kaskade (Kondensatoren und Dioden) nachgeschaltet. (Funktionsweise)
So stehen nun alle zum Betrieb der Röhre notwendigen Spannungen zur Verfügung um einen Elektronenstrahl zu erzeugen. Mit Hilfe von einstellbaren Spannungsteilern kann der Strahlstrom, sowie die Gitter für Helligkeit und Bildfocus eingestellt werden.
Der erste Leuchtfleck
Die Spannungen für die Ablenkplatten werden ebenfalls von der Hochspannungsversorgung entnommen und mittels Transistoren gesteuert. Somit ist eine Ablenkung des Elektronenstrahls in beiden Achsen möglich.
Plexiglasgehäuse
Die Transistoren wiederum werden über eine kleine Vorstufe ausgesteuert, die extern mit einer Spannung von -5V bis +5V gespeist wird. - der Steuerspannung für die Auslenkung des Leuchtfleckes. Dieser Steuerspannungseingang existiert für beide Achsen. Einen weiteren Eingang habe ich noch hinzugefügt, um den Elektronenstrahl zu "blanken" also dunkel zu schalten. Hierzu wird an das entsprechende Gitter eine entsprechende Spannung angelegt, die den Elektronenstrom zur Anode vorher sperren.
Anschlüsse 
So kann die Röhre nun von außen zum Beispiel mittels analogen Ausgängen von Mikrocontrollern (Arduino, PIC etc.) oder von NI DAQ Karten mit den dort zur Verfügung stehenden Kleinspannungen direkt angesteuert werden. Nach den ersten positiven Testläufen mit der Lochrasterplatinen-Elektronik habe ich dann ein sauberes Board konstruiert und die ganze Konstruktion auf eine Holzplatte montiert und mit einem transparenten Plexiglasgehäuse abgedeckt.
Alle Anschlüsse sind über Bananenbuchsen nach aussen geführt. So können zum Beispiel ganz einfach Lissajous-Figuren auf den Bildschirm gezeichnet werden...
Lissajous-Figur mit NI-DAQ

F101 Voodoo Radarmonitor

Aus einer McDonnel F101 Voodoo stammte das folgende Exemplar, das ich damals von einem Kunden bekam, mit der Bitte zu versuchen, es wieder irgendwie zum Leben zu erwecken.
Das Ding von dem ich schreibe war ein schwarzer Zylinder mit einer Länge von vielleicht 30 Zentimetern und einem Durchmesser von Knapp 20 Zentimetern. Auf einer Stirnseite des Zylinders war eine Bildfläche wie von einem Oszilloskop zu erkennen, mit einem drehbaren Skalenring mit einer 0 bis 360 Winkelgrade - Beschriftung.
Der Kunde erzählte mir, es handle sich dabei um das Cockpitradar eines StarfighterJets. Daraufhin begann ich zu recherchieren, was sich damals, Mitte der 90er Jahre als relativ aufwendig herausstellte, zumal das Internet noch nicht in der Form und Vielfalt existiewie heute existierte.

Bildquelle: Wikipedia
Aber zumindest habe ich herausgefunden, dass es sich bei dem Teil wirklich um den Boardmonitor des Radarsystems eines Flugzeuges handelte. Und zwar um den Radarmonitor einer McDonnel F101.
Einem zweistrahligen Kampfflugzeug des kalten Krieges der US-Airforce der 50er Jahre.
Auf jeden Fall stammte das Teil aus diesem Flugzeug - wo auch immer der Kunde es her hatte. Und er bat mich, ob ich irgend eine Möglichkeit habe, es zum Laufen zu bekommen. Damit meinte er, er wolle den berühmten, rotierenden Leuchtstrich am Bildschirm sehen.
Ich habe damals keinerlei Informationen oder Unterlagen zu dem Teil finden können, wie das Gewirr an Kabeln über Kabeln, die aus dem Gerät herauskamen anzuschliessen sei...
Frontansicht des Monitors
Also begann ich zu demontieren. Zum Vorschein kamen etliche Miniaturelektronenröhren, Transformatoren und viele in Schirmgehäusen eingebaute, noch kleinere Röhren mit Spulenkörpern mit Tauchkernen und viele, viele Kondensatoren. In der Längsachse des Gerätes war die Bildröhre untergebracht, wobei die Magnetablenkung um die Achse der Röhre drehbar angeordnet war. Sprich, die komplette Ablenkeinheit wurde mittels Elekromotorantrieb um die Röhre herumgedreht.




Ansicht von oben
Da ich keine Chance hatte, die Schaltung irgendwie zu verstehen, zumal anscheinend einige Komponenten, wie die ganze Spannungs- und Signalaufbereitung nicht im Monitor integriert waren, sondern anscheinend anderswo im Flieger verbaut waren, machte ich mich also daran, alles zu demontieren. Übrig blieb nur die Bildröhre mit der Mechanik und die Ablenkspulen samt Antrieb. Auf einer Lochrasterplatine begann ich nun, eine eigene Ansteuerung für den Spulenantrieb zu basteln. Für die Ablenkspule selbst, baute ich einen Sägezahngenerator mit einer ausreichend starken Leistungsendstufe. Und für die Hochspannung der Röhre musste ein alter Zeilentransformator eines Fernsehgerätes herhalten der von einem NE555 (der alte bekannte Timerbaustein) und einem passenden Leistungstransistor (irgendein BU508) angetrieben wurde.
und er geht sich wieder 

Die ganze Schaltung wurde mit circa 24V betrieben und nahm sich dabei über 2A. (samt Kathodenheizung und Elektromotor und den Skalenbirnchen, die die Beschriftungen beleuchteten).
Aber es klappte. Am Bildschirm war ein grüner Strich zu sehen, der sich mit der einstellbarer Rotationsgeschwindigkeit drehte. Das war aber auch schon alles. Es gab keine Strahlstrommodulation oder ähnliches, um irgendwelche simulierten Radarbilder zu zeichnen. Heute könnte man sich mit kleinen Microcontrollern wie Arduino und co, ganz einfach was zusammenbasteln...








Die Stirlingmaschine




die fertig aufgebaute Maschine
Als Geschenk erhielt ich im Winter 2014 einen Bausatz für ein Modell einer Stirling-Heißluftmaschine. Die Konstruktionspläne, sowie die zum Großteil vorgefertigten Teile, stammen von Herrn Klaus Künneth, dem Betreiber der Website www.kk-stirlingmotor.de

Zum Aufbau und der Montage sind nur ein wenig handwerkliches Geschick und ein paar Messgeräte und Werkzeuge nötig. (Ständerbohrmaschine, Bohrer und Gewindeschneider, ein Schleifbock mit Polierscheiben, zumindest eine Schiebelehre, ein wenig Klarlack und Maschinenöl). An einigen Teilen sind Bohrungen verschiedenster Durchmesser anzufertigen. ZumBeispiel am Schwungrad, den Pleuelstangen. In die Zylinder und Kopfdeckel sind die Befestigungslöcher zu bohren und Gewinde zu schneiden.

bohren des Schwungrades


Nach dem Vorbereiten aller Einzelteile wird an der Poliermaschine alles auf Hochglanz poliert. Danach kann mit dem Zusammenbau begonnen werden. Alles in Allem sollte man sich einige Stunden dafür Zeit nehmen um das Modell schön, sorgfältig und auch funktionstüchtig zu haben. Aus wenigen Teilen ist dann auch noch schnell ein kleiner Spiritusbrenner angefertigt, der für die, zum Betrieb nötige Wärme unter dem Arbeitskolben sorgt. Alles zusammen wird dann auf die mit Klarlack versiegelte Holzgrundplatte montiert.
fertig polierte Einheit
Die Funktionsweise des Stirlingmotors beschreibt Herr Künneth auf seiner Webseite wie folgt: 

"Der Stirlingmotor wird auch Heißluftmotor genannt und ist eine Wärmekraftmaschine, in der ein abgeschlossenes Arbeitsgas wie Luft (in diesem Fall) oder Helium von außen an zwei verschiedenen Bereichen (Heisse Seite und Kalte Seite) abwechselnd erhitzt und gekühlt wird, um mechanische Energie zu erzeugen. Der Stirlingmotor arbeitet nach dem Prinzip eines geschlossenen Kreisprozesses und ist ein Beispiel für die Energieumwandlung von einer schlecht nutzbaren Energieform (thermische Energie) in die besser einsetzbare Energieform mechanischer Energie. Der Stirlingmotor kann mit einer beliebigen externen Wärme- (oder Kälte)quelle betrieben werden (Solar, Holz, Gas, flüssige Brennstoffe, bei diesem Modell mit Spiritus)."

Wenn der Querschnitt nicht ausreicht

... oder kurzgesagt zu viel Strom durch einen zu dünnen Draht fließt, dann kann es sehr heiss werden. Wie das ganze dann aussieht, erkennt man ganz gut im Bild. Die Isolation des 1,5 mm² Litzendrahtes hat sich hier im Bereich der Klemme vollständig in Rauch aufgelöst...
Diese Steckverbindung sollte man also nicht mehr verwenden ;)