Dieses Blog durchsuchen

EVU Smartmeter mit ESP32 und ESPhome auslesen und in Homeassistant verwenden

In dem Beitrag mit dem Titel: "EVU Smartmeter mit ESP32 auslesen und Daten per MQTT senden" (link) habe ich beschrieben, wie sich die Smartmeter der EVUs über die Kundenschnittstelle auslesen lassen. Die Messdaten stehen dann als Topics über den mqtt Broker zur Verfügung und können in diversen Homeautomationen (HomeMatic, Homeassistant, etc.) weiterverarbeitet werden. Dazu benötigt man lediglich eine ESP32-Platine und ein paar wenige Kleinteile, um die Verbindung zum Smartmeter herstellen zu können. Als kleines Update habe ich den Aufbau (damals mit Stiftleisten auf Lochrasterplatine) mittlerweile ein wenig geschönt und eine Platine gefertigt.

Layout im Designtool

 

Der zugehörige Schaltplan entspricht im Wesentlichen auch der Skizze im damaligen Beitrag. Um ein wenig Komfort mit der neuen Platine zu erhalten, ist die Verbindung zur Kundenschnittstelle des Smartmeters über eine RJ-Buchse steckbar. Und auch die Spannungsversorgung habe ich über eine USB-Buchse realisiert.


 

Nach dem Bestücken und Aufstecken der ESP32 Platine bekam das Gerät noch ein kleines Gehäuse spendiert und verrichtet nun im E-Verteilerschrank seinen Dienst.


 

Die Hardware ist somit fertig und funktionstüchtig. Zum Thema Software habe ich mir auch überlegt, etwas zu ändern. Bis jetzt lief auf dem ESP ein Programm, das die Daten des Smartmeters entschlüsselt und dann per MQTT an die IP Adresse des Brokers gesendet hat. Da ich mittlerweile jedoch auch ein Anwender der ESPHome Integration in meiner HomeAssistant Umgebung bin, habe ich den ESP mit einem ESPHome Basisimage geflasht. Auf GitHub gibt es das Repository von Andre-Schuiki, auf dem er eine Version für ISKRA und SIEMENS Smartmeter für die Verwendung mit ESPHome veröffentlicht. Unter folgendem Link ist die Anleitung zur Installation zu finden: https://github.com/Andre-Schuiki/esphome_im350/tree/main/esp_home

Das Script für das ESPHome Graät sieht bei mir folgendermassen aus:

 

 esphome:  
  name: kelagsmartmeter  
  friendly_name: KelagSmartmeter  
  libraries:  
  - "Crypto" # !IMPORTANT! we need this library for decryption!  
 esp32:  
  board: esp32dev  
  framework:  
   type: arduino  
 # Enable logging  
 logger:  
 # Enable Home Assistant API  
 api:  
  encryption:  
   key: "da kommt der key rein des neu angelegten ESPHome Gerätes rein"  
 ota:  
  password: "das automatisch generierte ota passwort"  
 wifi:  
  ssid: !secret wifi_ssid  
  password: !secret wifi_password  
  # Enable fallback hotspot (captive portal) in case wifi connection fails  
  ap:  
   ssid: "Kelagsmartmeter Fallback Hotspot"  
   password: "das automatisch generierte password"  
 captive_portal:  
 external_components:  
  - source:  
    type: local  
    path: custom_esphome  
 sensor:  
  - platform: siemens_im350  
   update_interval: 5s  
   trigger_pin: 26 # this pin goes to pin 2 of the customer interface and will be set to high before we try to read the data from the rx pin  
   rx_pin: 16 # this pin goes to pin 5 of the customer interface  
   tx_pin: 17 # not connected at the moment, i added it just in case we need it in the future..  
   decryption_key: "00AA01BB02CC03DD04EE05FF06AA07BB" # you get the key from your provider!  
   use_test_data: false # that was just for debugging, if you set it to true data are not read from serial and the test_data string is used  
   test_data: "7EA077CF022313BB45E6E700DB0849534B697460B6FA5F200005C8606F536D06C32A190761E80A97E895CECA358D0A0EFD7E9C47A005C0F65B810D37FB0DA2AD6AB95F7F372F2AB11560E2971B914A5F8BFF5E06D3AEFBCD95B244A373C5DBDA78592ED2C1731488D50C0EC295E9056B306F4394CDA7D0FC7E0000"  
   delay_before_reading_data: 1000 # this is needed because we have to wait for the interface to power up, you can try to lower this value but 1 sec was ok for me  
   max_wait_time_for_reading_data: 1100 # maximum time to read the 123 Bytes (just in case we get no data)  
   ntp_server: "pool.ntp.org" #if no ntp is specified pool.ntp.org is used  
   ntp_gmt_offset: 3600  
   ntp_daylight_offset: 3600  
   counter_reading_p_in:  
    name: reading_p_in  
    filters:  
     - lambda: return x / 1000;  
    unit_of_measurement: kWh  
    accuracy_decimals: 3  
    device_class: energy  
   counter_reading_p_out:  
    name: reading_p_out  
    filters:  
     - lambda: return x / 1000;  
    unit_of_measurement: kWh  
    accuracy_decimals: 3  
    device_class: energy  
   counter_reading_q_in:  
    name: reading_q_in  
    filters:  
     - lambda: return x / 1000;  
    unit_of_measurement: kvarh  
    device_class: energy  
   counter_reading_q_out:  
    name: reading_q_out  
    filters:  
     - lambda: return x / 1000;  
    unit_of_measurement: kvarh  
    device_class: energy  
   current_power_usage_in:  
    name: power_usage_in  
    filters:  
     - lambda: return x / 1000;  
    unit_of_measurement: kW  
    accuracy_decimals: 3  
    device_class: energy  
   current_power_usage_out:  
    name: power_usage_out  
    filters:  
     - lambda: return x / 1000;  
    unit_of_measurement: kW  
    accuracy_decimals: 3  
    device_class: energy  
  # Extra sensor to keep track of uptime  
  - platform: uptime  
   name: IM350_Uptime Sensor  
 switch:  
  - platform: restart  
   name: IM350_Restart  

 

Keine Kommentare:

Kommentar veröffentlichen